Z. chathamiensis (Hector) from the same seas*. Indeed, so far as can be judged from the description and photographs, the two specimens attributed to the former differ more from each other than does either of them from Z. chathamiensis, especially if, as Dr. v. Haast himself suggests, the difference in the size of the teeth is a sexual character.
3. The photographs sent by Dr. v. Haast of Z. nove-zealandice, when compared with the specimen of Z. indicus, Van Beneden (Petrorhynchus capensis, Gray), at the British Museum, do not show any greater differences than are consistent with the range of individual variation.
4. The differences between the last-named species, or supposed species, and Z. cavirostris, Cuvier, and Z. australis, Burmeister, have never been clearly defined; no proof has therefore yet been given of the existence of more than one species of the genus.
5. Dr. v. Haast's specimen differs from all other known skeletons in having but nine ribs instead of ten. But it is not improbable that the last pair (often rudimentary and unattached to the vertebral column) may have been lost during the preparation. This appears more likely, because the ninth rib (as shown in the photograph) is larger than the last rib usually is in these animals, and the transverse process of the supposed first lumbar vertebra appears somewhat dilated at the end. Moreover the presence of one pair of ribs more or less is often only an individual character in the Cetaceans.
6. A more serious difference consists in the absence of the dorsal fin (hitherto met with in all members of the genus examined); but it must be noted that this is not Dr. v. Haast's own observation, and was made after "nearly all the blubber had been taken off."
3. Notes on Mesoplodon floweri. By Julius von Haast, Plı.D., F.R.S, Director of the Canterbury Museum, New Zealand.
[Received May 5, 1876.]

(Plates XLV. \& XLVI.)

Tn the begimning of April 1874, the information reached me that a Whate about 18 feet long had been stranded on the sea-beach near Saltwater creek, abont 30 miles north of Banks Peninsula; and although I did not lose any time in securing the skeleton for the Canterbury Museum, I was too late to obtain the necessary information as to form, colour, position of fins, etc., the animal having in the mean time been stripped in order to obtain the bhubber.

Fortunately, however, no bone was lost; and on examination the animal proved to be a Mesoplodon, closely allied to a specimen obtained at the Cape of Good Hope, of which the skull has been described and figured by Dr. Gray, P. Z. S. 1865, p. 358, and subse-

[^0]quently by Prof. Owen, in vol. xxiii. of the publications of the Palæontographical Society of London, under the title of Ziphius (Dolichodon, Gray) layardi.

So far as I am aware, nothing is known of that interesting animal except the skull with the lower jaw, between which and the NewZealand specimen under review there exist some points of difference, as I shall point out further on; moreover, as I believe that the same species of Ziphioid Whale would scarcely exist in two regions so far distant from each other, I have thought it more expedient to desiguate the New-Zealand species by the specific term floweri, in honour of the accomplished anatomist, Prof. W. II. Flower, F.R.S., to whom the New-Zealand naturalists owe a great debt of gratitude for his excellent memoir on Berardius arnouxi.

The animal proved, on dissection, to be a full-grown male and or mature age, the terminal epiphyses of the bodies of the vertebree being so thoroughly ankylosed that the line of junction could not be detected; and we can draw the conclusion from its osteological characteristics that it must have combined considerable strength with great swiftness, whilst at the same time the large and remarkable strap-like teeth must have given it a peculiar appearance.

The skeleton (Plate XLV. fig. 1), as now mounted, has a total length of 17 feet 9 inches, which closely corresponds with the measurement given to me, and taken before the flesh was removed from the skeleton.

The skull, of which I add an upper view (Plate XLVI. fig. 1), resembles in all its general features so closely the skulls of M. layardi, as described by Prof. Owen, that it would be superfluous to offer any detailed account of it.

Amongst other peculiarities, the frontals have also the same welldefined form, and appear as a dense convex ridge between the premaxillaries as in the Cape specimen.

Notwithstanding this general likeuess, if we compare closely the figures of both skulls, it is nevertheless apparent that there exist some differences between them, of which I wish to point out the following ones:-

Thus the frontals in the Cape specimen rise higher above the maxillaries than in the New-Zealand specimen ; and the occipital portion of the skull is far more rounded in the former than in the latter, in which the supra-occipital stands nearly vertical, whilst in the Cape specimen this portion of the skull has a considerable slope towards the foramen magnum. At the junction of the basioccipital with the temporal, the former enters the latter with a sharp angular projection, whilst in the New-Zealand specimen it has a rounded edge.

The interparietal in the New-Zealand specimen runs up to the crest a much narrower bone than in the Cape one, in which it has a rounded form near its junction with the frontals.

Besides the difference in the mandibular teeth to be pointed out hereatter, I find that the lower jaw is far deeper in proportion to its length in the New-Zealand specimen.

Measured on the drawing of that bone in the fignre given by Prof. Owen, the total length of the lower jaw of M. layardi, from the point to the angle, is to the greatest depth as $8 \frac{1}{\overline{5}}$ to 1 , whilst in the NewZealand specimen it is as $6 \frac{1}{2}$ to 1 . In M. layardi the lower jaw is much more slender, the upper and lower border being very slightly inclined to one another, whereas in M. floweri the two borders form a much more open angle with one another, the upper border being very convex near the coronoid process. If both skulls were available for comparison side by side, I have no doubt that other differences would be detected, especially by a comparative anatomist of more experience than I possess.

There is an important difference in amount of currature of the large tooth on each side of the lower jaw, which in the Cape specimen is so much arched that the apices of both teeth actually meet above the rostrum, a peculiarity which the late Dr. Gray thought could scarcely be a malformation. In the New-Zealand specimen that curvature, although existing, is not so pronounced, the point of the tooth standing in a rertical line above the centre of the root. Its form and position agree entirely with those of the tooth of a lower jaw brought from the Chatham Islands by Mr. Hi. Travers, and deseribed and figured by Dr. Hector as Dolichodon (Mesoplodon) layardi in the fifth volume of the 'Transactions of the New-Zealand Institute.' Behind this mandibular tooth there is no partial hollow on the upper margin of the lower jaw, as if it were the carite of an old tooth that had fallen out, as is the case in the Cape specimen, and which was first pointed out by Dr. Gray in his 'Catalogue of Seals and Whales in the British Museum.' The New-Zealand specimen under reriew thus conforms also in this respect to the lower jaw obtained in the Chatham Islands.

The anterior edges of both teeth, however, are perfectly intact, and not worn away like those in the Cape and Chatham Island specimens; a peculiarity which might be traced to individual habits, and is, I suppose, not of any specific value. There is no doubt that the New-Zealandrand Chatham-Island specimens could open their mouths, as there is sufficient space for the rostrum to pass between the apices of the teeth. Howerer, there has evidently been some abrasion on the inner side of both teeth near the crown, as they are here somewhat worn down and polished. The small enamelled portion rising on the anterior edge of the apex is not quite so large as in the Cape specimen.

The lower jaw from the Chatham Islands is 1.75 inch shorter than that of the specimen under review, in which latter the mandibular tooth is also much longer, which may be regarded as an individual difference only.

The following Table of measurements will also supply further material for comparison :-

> Dimensions of the skull. ft. in.

Extreme length of cranium. 3 5•75
Length of rostrum from the apex of the pree-
maxillæ to a line drawn between the ante- ft. in.
orbital notches $2 \quad 3 \cdot 48$
Greatest height from top of nasal to lower base of pterygoids $13 \cdot 80$
Greatest breadth across postorbital process of frontals $13 \cdot 22$
Breadth of base of rostrum between bottom of anteorbital notches $5 \cdot 90$
Breadth of rostrum in the middle $2 \cdot 71$
Greatest width of the two nares $2 \cdot 15$
Height of crest above occipital foramen $8 \cdot 75$
Distance from point of rostrum to crest over blowers (in a straight line) $2 \quad 8 \cdot 48$
Mandible.
Length of ramus 210.75
Length of symphysis $8 \cdot 05$
Vertical height of ramus at coronoid process $4 \cdot 82$
Distance from the condyle to the hinder edge of the base of the mandibular tooth 1 9'53
Breadth of exposed part of mandibular tooth along upper margin of ramus $4 \cdot 51$
Length of mandibular tooth measured along an- terior edge from upper margin of ramus to crown $8 \cdot 74$

Myoid Bones.

The basihyal and thyrohyal are united into one bone; the two latter are each $4 \cdot 5$ inches long and $2 \cdot 1$ inches broad at their junction with the basihyal. The anterior edge of this bone is formed by two processes, adrancing considerably beyond its general outline and separated in the centre by a deep notch, in which respect the bone resembles that of Epiodon nove zealandice.

The two posterior points of the thyrohyals stand $7 \cdot 2$ inches apart.
The stylohyals are $7 \cdot 5$ inches long ; they possess a distiuct head for their articulation with the skull, and have afterwards for some distance still a roundish form, then gradually flattening till about 2.5 inches from their anterior end they are 1.75 inch broad and 0.5 inch thick, the upperside having a sharp ridge and the lower side being flattened.

Vertebral Column.
The number of vertebræ are as follows :-
Cervical . 7
Thoracic. 10
Lumbar. 10
Candal 19

Mesoplodon floweri thus agrees in these particulars with M. sowerbiensis.

Cervical Vertebra.

Measured along the lower side of their main bodies, the seven cervical vertebre have a total length of $5 \cdot 75$ inches. Of them, the atlas, second, and third vertebre are united into one large triangular bone 8 inches broad and 6.10 inches high (see no. 16). Only their lower processes, of which those of the second are the largest, are free. The third vertetebra has two distinct transverse processes on each side, of which the higher one (diapophysis) is a thin bone, with its termination pointing downwards. The next four vertebræ are all free; and if we take into consideration that the skeleton under review belonged to a fully adult animal, there is no doubt that no further change in their relations to each other would have taken place.
The upper as well as the inferior transverse processes become gradually smaller as we advance towards the thoracic region. In the fourth vertebra the inferior transverse process has still a horizontal direction ; in the fifth it assumes a downward slope, which is continued to the seventh, where it consists only of a small tubercle. Above it, on the side of the body of this vertebra, is the articular surface for the head of the first rib. The fourth vertebra had evidently a small spinous process, which doubtless was broken off in cleaning it; in the fifth the spinous process is 1.05 inch, in the sixth 1.53 inch, and in the seventh 2 inches high, all leaning a little forwards. The bodies of the last four vertebræ are broader than they are high. M1. floweri therefore stands so far alone in regard to the arrangement of the cervical vertebre, as no other Ziphiod Whale, so far as I am aware, has the first three cervical vertebre ankylosed and each of the next four perfectly free.

Thoracic V'ertebre.

The species under review possesses ten, of which the bodies are all flattened from top to bottom and become gradually of larger dimensions, the body of the first being $1 \cdot 12$ inch, and the tenth $4 \cdot 20$ inches in postero-anterior length. The spinons process of the first is pointed and stands slightly forwards; that of the second stands nearly vertical, after which in the remaining eight vertebre it gradually slopes more and more backward and becomes higher and broader. This process in the second and third has rather a rounded apex, after which it becomes more troncated in the rest.

The height of the spine of the first thoracic vertebra is $4 \cdot 25$ inches, of the tenth 9 inches.

The articulation for the head of the second rib is situated at the posterior end of the first vertebra, low, at the base of the arch ; it rises gradually in the two next, so that in the third vertebra this articulation is placed some distance above that base, a position which it maintains in the fourth, fifth, and sisth, after which it disappears, the following ribs having only one articulation.

The transverse process, which springs from both sides of the arch,
is in the first three vertebræ a rounded apophysis ; in the next four vertebræ it gradually enlarges, becoming, as in Epiodon nove-zealandice, laterally compressed, showing one strongly marked process pointing upwards and forwards, as well as a well indicated and posterioriy situated articulation for the tubercle of the ribs. A separation into two distinct processes takes place in the eighth, the forward or anterior process of the apophysis now appearing as the metapophysis, and its lower or posterior process forming a lower transverse process, starting as a small rounded prominence from the anterior border of the upper portion of the body, and on which the articular surface for the eighth rib is situated, directed obliquely backwards.

In the ninth vertebra this separation is still more accomplished, the metapophysis being well developed, and the transverse process, which springs now from near the centre of the body, although thicker and more rounded than those of the succeeding vertebræ, takes already its usual form. It has an articular surface for the ninth rib on its posterior end, with the same direction as in the preceding one.

The tenth vertebra, which is the largest of the series, has a very large transverse process, depressed and broad, on the edge of which the tenth small rib obliquely articulates. This transverse process is the broadest and longest of the whole series of vertebræ-those of the lumbar region, begiming with the first, getting by degrees shorter and narrower.

The transverse process of the ninth thoracic vertebra has a horizontal and somewhat backward direction; that of the tenth stands straight; whilst the same process in the lumbar and in the first series of the caudal vertebre has, besides a slightly downward, also a forward direction. The bodies of the thoracic vertebre up to the seventh have a flattened lower surface, after which a keel starts ou the eighth, which is well pronounced on the ninth and tenth.

Lumbar Vertebra.

The ten humbar vertebræ resemble each other very much in form. Gradually they become more elongated, the first having an anteroposterior length of 4.55 inches, and the eighth of 6.30 inches, after which they shorten again a little. They possess each a median keel, and are compressed in the centre below the transverse process. The spinous processes are large and high, increasing to the eighth, which is 11.50 inches high, after which they slightly decrease. The arches arise from the centre of the bodics, thus differing from Berardius and Epiodon, where they have a more anterior position.

Caudal Vertebre.

There are nineteen caudal vertebræ, of which the first ten have a deep channel running along their lower surface. The spinous processes gradually lose in height, that of the tenth vertebra consisting only of a slight excrescence. The lower transverse processes also shorten by degrees, so that in the sixth they are represented by a small horizontal ridge, which is only faintly indicated in the seventh. In the eighth, ninth, and tenth vertebree all signs of such processes
are missing; but they are also strongly laterally compressed. There are nine chevron bones, of which the last is missing. With the eleventh vertebra the second series of the caudal vertebre begins, which in form greatly resemble those of the New-Zealand Epiodon.

Rils.
There are ten ribs on each side, of which seven have two articulations and the last three only one.

The first is the shortest of the whole series with the exception of the last; it is also the broadest.

There is scarcely a sign of an articular process for its articulation with the seventh cervical vertebra, and only a very slightly marked articular surface for the transverse process, botl being indicated by a small indentation on the edge of the head of the rib. The second rib has the same flattened form as the first; it is longer, and both articulating processcs are better-defined. From the sccond to the sixth rib, they gradually lengthen, after which they diminish again a little until we reach the tenth, which is the shortest of the whole serics. The third, fourth, fifth, sixth, and seventh ribs have all well defined articulating processes and nearly the same form, flattened at and near their head, after which, for nearly one third of their total length, they become more constricted and assume a prismoid shape, after which they flatten and gain again in breadth, their terminal end being, however, narrower. The eightl and ninth ribs, which have only one articulating process for their junction with the transverse process, have the same form as the foregoing if we imagine their heads and necks removed. The tenth rib is flattened throughout; it has also only one articulating surface, and at its posterior end rimes out to a point.

The greatest length of each rib, measured in a straight line, is :-
feet. inches.

First	1	$2 \cdot 75$
Sccond	I	$9 \cdot 50$
'Third.	2	$1 \cdot 60$
Fourth	2	$4 \cdot 10$
Fifth	2	$4 \cdot 25$
Sixth	2	$4 \cdot 80$
Seventh.	2	$4 \cdot 60$
Eighth	2	$3 \cdot 50$
Ninth	2	$3 \cdot 03$
'renth		$10 \cdot 25$

Sternum.

The sternum consists of four principal segments, of which the fourth and smallest is separated into a left and a right portion by a division in the centre, which apparently would not have disappeared by ankylosis in a still more aged state of the skeleton.

The first segment is the largest and broadest; it is without a keel, but is well rounded towards the central line. There is a deep exea-
vation in its upper, and a shallower one in its lower portion. Similar excavations exist in the three other segments, by which three fenestra of a rounded shape are formed.

There are five articulating surfaces on each side for the stcmal ribs-the first near the upper portion of the first segment, the second at the junction of the first and seeond seoments, the third at the junction of the second and third semments, the fourth at the junction of the third and fourth segments, aud the fifth at each side of the fourth segment on its lower portion.

Pectoral Limb.

The scapula is remarkably flat, and without prominent ridges, so that there is scarcely my sign of the postscapular fossa. In form it resembles that of Mesoplodon sowerbiensis. The acromion is broad, and has an upward slope in its anterior portion; the coracoid is that and narrow, but widens considerably at its extremity, where it assumes a prismoid form.

The humerns, ulna, and radins resemble also considerably those of M. sowerhiensis. The epiphyses on both extremities are so well anchylosed that sarcely the line of junction can be traced.

The elements of the carpus are, with the exception of the magnum and trapezoid, which are united into one bone, all separate, thus resembling also M. sowerliensis and the New-Zealand Epiodon. The same appears to be the case with the digits, which, however, have somewhat suffered, as the pectoral fin had been much lacerated before the skeleton was secured.

Pelvic Bone.

The pelvic bone for the attachment of the crura of the penis is of small size, and of rather irregular form. It is 4 inches long, 0.37 inch broad near both extremisies, and 0.25 inch in the middle portion. It is romuded posteriorly and flat anteriorly, getting gradually flatter as we reach the lower end of the bone. It is very light and spongy.

4. Remarks upon Dr. von Haast's Communication on Mesoplodon floweri. By Professor Flower, E.R.S.

On comparing the excellent photograph sent by Dr. v. Haast of of the skull of this animal with the type specimen of M. layardi, from the Cape of Good Mope, in the British Museum, neither Professor Van Beneden nor myself could detect any differences of the slightest specific importance; indeed at first sight we were inclined to say that the photographs might have been taken from that very specimen. The latter, however, is a trifle larger in all its climensions, being an inch and a quarter longer; and the teeth are rather more developed, probably the effect of somewhat greater age.

[^0]: * Trans. New-Zealand Institute, vol. v. p. 164, pl. iv. (1878).

